A Structural Investigation of Monoclinic $\mathrm{SmCo}(\mathrm{CN})_{6} \cdot \mathbf{4 H} \mathbf{2} \mathbf{O}$

D. F. MULLICA, H. O. PERKINS, and E. L. SAPPENFIELD
Departments of Chemistry and Physics, Baylor University, Waco, Texas 76798

Received September 4, 1987

Abstract

The crystal structure of $\mathrm{SmCo}(\mathrm{CN})_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ has been determined from three-dimensional, singlecrystal, X-ray diffraction data and refined by the full-matrix least-squares method to give $R=0.0137$ ($R_{\mathrm{w}}=0.0137$) and $\Sigma_{2}=1.04$. The compound crystallizes in the monoclinic space group $P 2_{1} / m, a=$ $7.365(1), b=13.653(2), c=7.385(2) \AA$, and $\beta=120.08(2)^{\circ}$. For $Z=2$, the calculated density is 2.261 $\mathrm{Mg} \mathrm{m}^{-3}\left(D_{\mathrm{m}}=2.24(2) \mathrm{Mg} \mathrm{m}^{-3}\right)$. A total of 882 unique reflections were measured with Mo $K \alpha$ radiation by the $\omega-2 \theta$ scan technique. The Sm ion is eight-coordinated in a square antiprism geometry, the $\mathrm{SmN}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ group. The Co ion is octahedrally coordinated to six carbon atoms, the CoC_{6} group. These groups are connected by cyanide bridges. Two uncoordinated water molecules occupy holes in the structure. Important mean bond distances are: $\mathrm{Sm}-\mathrm{N}=2.512, \mathrm{Sm}-\mathrm{O}=2.404, \mathrm{Co}-\mathrm{C}=1.890$, and $\mathrm{C} \equiv \mathrm{N}=1.146 \AA$. Dehydration, fluorescence, and infrared data are reported. © 1988 Academic Press, Inc.

Introduction

In 1916, James and Willard (1) reported that the rare-earth cobalticyanides possess the formula $(R E)_{2}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O}$, i.e., $R E C o(C N)_{6} \cdot 4.5 \mathrm{H}_{2} \mathrm{O}$. Similar results were published for the lanthanide ($L n$) hexacyanoferrates, but the water molecules per formula unit varied from 3 to 4.5 (2). The preparation and magnetic properties of several members of the lanthanide cobalticyanide series were presented by Karantassis et al. (3). These investigations were followed by conductance studies of several $L n \mathrm{Co}(\mathrm{CN})_{6}$ (4).

It was not until 1975 with the work of Bonnet and Paris (5) using infrared and Xray diffraction methods that the hexacyanocobaltates (III) of the lanthanide series
were classified as belonging to the hexagonal system. The characterization of LaCo $(\mathrm{CN})_{6} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ by single-crystal diffractometry (6) showed that this compound was indeed in the hexagonal system, $P 6_{3} / m$. An informative investigation of $\mathrm{LnCo}(\mathrm{CN})_{6}$. $n \mathrm{H}_{2} \mathrm{O}$ was conducted by Hulliger et al. (7). In their report, large $L n$ ions in the cobalticyanide series crystallize in the hexagonal system ($L n=$ La . . . Nd) whereas smaller $L n$ ions in the series ($L n=S m . . . L u$) belong to an orthorhombic modification which is brought about by a gradual dehydration process. Further, it was stated that the $L n \mathrm{Co}(\mathrm{CN})_{6}$ series was analogous to the $\operatorname{LnFe}(\mathrm{CN})_{6}$ series. With this in mind and the recent discovery that $\mathrm{SmFe}(\mathrm{CN})_{6}$. $4 \mathrm{H}_{2} \mathrm{O}$ crystallizes in the monoclinic system $\left(P 2_{1} / m\right)$ and not in the orthorhombic system
(8), it was deemed necessary to examine samarium hexacyanocobaltate (III).

Experimental

Starting materials were of reagent-grade quality. An aqueous acidic solution (pH 4) of 0.2 M SmCl 3 was added to 15 ml of 0.1 M $\mathrm{K}_{3} \mathrm{Co}(\mathrm{CN})_{6}$. The mixture was filtered and stored in the dark at room temperature. Clear and colorless single crystals formed after 2 to 5 days and, after harvesting, the crystals were washed several times with tri-ple-distilled water. The crystals of SmCo $(\mathrm{CN})_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ are indefinitely stable at room temperature. The flotation method was used to obtain the experimental density, $2.24(2) \mathrm{Mg} \mathrm{m}^{-3}$ (calcd, $2.261 \mathrm{Mg} \mathrm{m}^{-3}$). Xray fluorescence analysis verified the metal constituents and a thermal gravimetric analysis (Perkin-Elmer TGS-1) revealed the water content, 4.03 (8) water molecules per formula unit. A Perkin-Elmer 521 grating ir spectrometer using the KBr pressedpellet method was employed to obtain pertinent spectral data. Absorption maxima are in the vicinities of $3615(\nu-\mathrm{OH}$, free hydroxyl); 3415 ($\nu-\mathrm{OH}$, very broad, intermolecular hydrogen bonding); 2150 (ν-CN, stretching); 1615 ($\delta-\mathrm{HOH}$, water of hydration); 600 ($M-\mathrm{CN}$, bending); and $440 \mathrm{~cm}^{-1}$ ($M-C$, stretching). The biaxial character of the titled compound was determined by a conoscopic rotational examination using two crossed polarizers on a Zeiss Photomicroscope II.

The single crystal used in the structural analysis was chosen on the basis of optical quality and was mounted on an Enraf-Nonius CAD-4F diffractometer equipped with a graphite monochromator ($\mathrm{Mo} K \bar{\alpha}, \lambda=$ $0.71073 \AA$). The available system routines (search, index, and least squares) yielded the orientation matrix and the lattice constants, $a=7.365$ (1), $b=13.653$ (2), $c=$ 7.385 (2) $\AA, \beta=120.08$ (2) ${ }^{\circ}$ (monoclinic, $P 2_{1} / m, Z=2$). The initial cell obtained from the index program was hexagonal ($a \approx b, \gamma$
$=120.08$). However, after examining a short data set, the hexagonal system was rejected due to noncyclic permutational conditions which were presupposed from the biaxial behavior of the system. The hexagonal cell was transformed using a theoretical extension of the reduced-cell concept (Niggli matrix) to the orthorhombic system, similar to the orthorhombic cell (Cmcm) reported by Hulliger et al. (7). Since $h k l, \bar{h} k l$ intensity discrepancies were found ($h k l \neq \bar{h} k l$), this system was also rejected especially after observing the averaged data, $R_{\text {int. }}=0.17$. After much effort and work, a monoclinic cell $\left(P 2_{1} / m\right)$ with a $\approx c$ and $\beta=120.08$ (2) was chosen. The ω 2θ technique was used to collect intensity data. The monitored standard reflections showed no systematic intensity variation, thereby assuring crystal and hardware stability. Lorentz and polarization corrections were made as well as secondary extinction corrections ($g=6.84 \times 10^{-8} \mathrm{e}^{-2}$). Equivalent reflections were averaged ($R_{\text {int. }}=$ 0.007) yielding 882 reflections with intensities greater than 3σ. The Sm atomic position was obtained from patterson mapping ($0.35,0.25,0.67$) which is essentially the same site for La in hexagonal $\mathrm{LaCo}(\mathrm{CN})_{6}$. $5 \mathrm{H}_{2} \mathrm{O}(6),\left[\frac{1}{3}, \frac{2}{3}, \frac{1}{4}\right]$. Cobalt, carbon, nitrogen, and oxygen atoms were obtained by the difference Fourier method. A full-matrix least-matrix refinement package was employed (9). All atoms, except Co, were refined anisotropically which lead to final index values of $R=0.0137$ and $R_{\mathrm{w}}=0.0137$ and a "goodness-of-fit'" of 1.04 . The maximum value of abscission was 5×10^{-4}. A final residual density map revealed only a random fluctuating background. Scattering factors and anomalous dispersion terms were obtained from the usual source (10). Atomic coordinates, equivalent isotropic thermal parameters, interatomic and contact lengths, and bond angles are presented in Tables I and II. Tables of observed and calculated structure factors are available from the authors.

TABLE I
Positional Parameters and Equivalent Isotropic Thermal Parameters with Estimated Standard Deviations for $\mathrm{SmCo}(\mathrm{CN})_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

Atom	x	y	z	$U_{\text {eq }}{ }^{a}$
Sm	$0.35054(4)$	0.250	$0.67529(4)$	$0.00973(6)$
Co	0.000	0.500	0.000	$0.78(1)^{*}$
C1	$0.0911(5)$	$0.4123(3)$	$0.8635(5)$	$0.015(1)$
C2	$0.2678(5)$	$0.5597(3)$	$0.1337(5)$	$0.016(1)$
C3	$0.0912(5)$	$0.4125(3)$	$0.2275(5)$	$0.015(1)$
N1	$0.1491(5)$	$0.3616(3)$	$0.7796(5)$	$0.024(1)$
N2	$0.4300(5)$	$0.5953(3)$	$0.2148(5)$	$0.0223(9)$
N3	$0.1489(5)$	$0.3165(3)$	$0.3697(5)$	$0.024(1)$
O1	$0.3116(4)$	$0.5984(2)$	$0.6553(5)$	$0.0321(9)$
O2	$0.4304(7)$	0.750	$0.9504(6)$	$0.033(1)$
O3	$0.4306(6)$	0.750	$0.4805(6)$	$0.033(1)$

Note. Starred atoms were refined isotropically.
${ }^{a} U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}+U_{12} \cos \gamma+U_{13} \cos \beta+\right.$ $\left.U_{23} \cos \alpha\right) / 3$.

* Refined isotropically.

Results and Discussion

Samarium cobaltic hexacyanide tetrahydrate is monoclinic and isostructural with its ferricyanide analog (8). The samarium ion is eight-coordinated $(\mathrm{CN}=8)$ and its ligands are arranged in a square antiprism

TABLE II
Interatomic Bond Distances (\AA) and Angles (${ }^{\circ}$)
with Estimated Standard Deviations for $\mathrm{SmCo}(\mathrm{CN})_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

Sm-N (1)	$2.504(3)$	Co-C(1)-N(1)	$177.9(2)$
Sm-N (2)	$2.534(3)$	Co-C(2)-N(2)	$179.7(2)$
Sm-N (3)	$2.501(3)$	Co-C(3)-N(3)	$178.0(2)$
Avg.	2.513	Avg.	178.5
Sm-O (2)	$2.403(4)$		
Sm-O (3)	$2.405(4)$		
Avg.	2.404		$167.0(2)$
		Sm-N(1)-C(1)	$160.7(2)$
Co-C(1)	$1.891(4)$	Sm-N(2)-C(2)	$148.7(2)$
Co-C(2)	$1.891(4)$	Sm-N(3)-C(3)	$166.8(2)$
Co-C(3)	$1.889(4)$	Avg.	160.8
Avg.	1.890		
C(1)-N(1)	$1.145(5)$		
C(2)-N(2)	$1.142(5)$		$89.7(2)$
C(3)-N(3)	$1.150(5)$	C(1)-Co-C(2)	$80.6(2)$
Avg.	1.146	C(1)-Co-C(3)	9.
		C(2)-Co-C(3)	$89.7(2)$
O(1)-O(3)	$2.802(5)$	Avg.	90.0

geometry ($D_{4 d}$), forming the $\operatorname{SmN}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ group (see Fig. 1) which is linked to the octahedrally arranged $\mathrm{CoC}_{6}(\mathrm{Co}, \mathrm{CN}=6)$ group by cyanide bridging. The infinite polymeric array has additional water mole-

Fig. 1. $\mathrm{SmCo}(\mathrm{CN})_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. (a) The square antiprism geometry and (b) the octahedrally arranged cyano groups about the iron atom and the cyanide bridging which links the $\mathrm{SmN}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ and FeC_{6} groups.

Fig. 2. $\mathrm{SmCo}(\mathrm{CN})_{6} \cdot \mathbf{4 \mathrm { H } _ { 2 } \mathrm { O } \text { . A stereoscopic view of the contents of the unit cell. The fully coordi- }}$ nated $\mathrm{Sm}^{3+}(\mathrm{CN}=8)$ and $\mathrm{Co}^{3+}(\mathrm{CN}=6)$ ions are presented. The zeolitic trapped water molecules, $\mathrm{O}(1)$, are seen within the $\mathrm{Sm}-\mathrm{N} \equiv \mathrm{C}-\mathrm{Co}$ network.
cules trapped in cubic-like cages within the structure (see Fig. 2). The two bonded water molecules are arranged trans to one another on one of the square faces of the square antiprism. Both faces of the polyhedron are planar to within $0.008 \AA$ (leastsquares plane refinement) and the dihedral angle between the planes is 0.1°, verifying parallelism. The zeolitic water molecules can be removed from the cages by careful heating of the crystal to 135°, very slowly. A stable dihydrate is formed which is expected to be the topic of future work.
The averaged $\mathrm{Sm}-\mathrm{N}$ and $\mathrm{Sm}-\mathrm{O}$ distances of 2.513 and $2.404 \AA$, respectively, are in good agreement with published bond lengths found in BIDICS (11). The averaged cobalt to carbon bond distance of $1.890 \AA$ is in excellent agreement with the

Co-C bond length calculated by Curry and Runiciman (12), $1.89 \AA$, and with the experimental work of Vannerberg (13), 1.896(11) \AA, and that of Reynhardt and Boeyens (14), 1.89(1) \AA, on the crystal structure of $\mathrm{K}_{3} \mathrm{Co}(\mathrm{CN})_{6}$. The averaged $\mathrm{C} \equiv \mathrm{N}$ bond distance of $1.146 \AA$ is in very good agreement with values found in the literature related to cyanide bridging (12-17). The interaction of Co $3 d$ orbitals and the cyanide orbitals shows strong directional bonding; the average $\mathrm{Co}-\mathrm{C} \equiv \mathrm{N}$ bond angle is 178.5°. Directional influences are not observed when considering electrostatic binding of the samarium ion, $\mathrm{Sm}-\mathrm{N} \equiv \mathrm{C}$ bond angles vary between 148.7 and 167.0°. The zeolite water molecule, $\mathrm{O}(1)$, which is found within the $\mathrm{Sm}-\mathrm{N} \equiv \mathrm{C}-\mathrm{Co}$ network, is within hydrogen bonding distances $(2.802 \AA)$ to the coordi-
nated water molecule, $O(3)$. The work of Brown (18) on the geometry of hydrogen bonds has shown that 0 . . . O contact distances of approximately $2.73 \AA$ relate to strong hydrogen bonding and as the contact distances increase, hydrogen bonding becomes progressively weaker. Infrared data demonstrates that hydrogen bonding prevails in the $\mathrm{SmCo}(\mathrm{CN})_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ system, a very strong and broad ν - OH in the vicinity of $3415 \mathrm{~cm}^{-1}$. The zeolitic property of $O(1)$ and its stability within the structure can be attributed to the hydrogen bonding. For many years, researchers have believed the $\mathrm{LnCo}(\mathrm{CN})_{6} \cdot n \mathrm{H}_{2} \mathrm{O}$ series belonged to the hexagonal system ($L n=\mathrm{La} .$. . Nd) or to the orthorhombic system ($L n=S m .$. Lu). Only $\mathrm{LaCo}(\mathrm{CN})_{6} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, by means of single-crystal X -ray diffraction (6), was truly verified (hexagonal, $P 6_{3} / m$). Much work is needed in this area, since it has been shown that $\mathrm{SmCo}(\mathrm{CN})_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ is neither hexagonal nor orthorhombic. The structural analyses of other heavier Ln $\mathrm{Co}(\mathrm{CN})_{6} \cdot n \mathrm{H}_{2} \mathrm{O}$ compounds are in progress.

Acknowledgment

The authors gratefully acknowledge the financial support of this work by the Robert A. Welch Foundation (Grant AA-668).

References

1. C. James and P. S. Willard, J. Amer. Chem. Soc. 38, 1497 (1916).
2. W. Prandtl and S. Mohr, Z. Anorg. Allg. Chem. 236, 243 (1938).
3. T. Karantassis, K. Basileiados, and N. Perakis, C. R. Seances Acad. Sci. 208, 1720 (1939).
4. G. Atkinson, J. Amer. Chem. Soc. 82, 818 (1960).
5. M. C. Bonnet and R. A. Paris, Bull. Soc. Chim. Fr. 5-6, 1067 (1975).
6. D. F. Mullica, W. O. Milligan, and W. T. Kouba, J. Inorg. Nucl. Chem. 41, 967 (1979).
7. F. Hulliger, M. Landolt, and H. Vestch, J. Solid State Chem. 18, 307 (1976).
8. H. O. Perkins, Dissertation, Baylor University, Waco, TX (1986).
9. Enraf-Nonius, "Enraf-Nonius VAX Structure Determination Package," Delft (1982).
10. J. A. Ibers and W. C. Hamilton, Eds., "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1974).
11. "Bond Index of the Determinations of Inorganic Crystal Structures," BIDICS, Institute for Material Research, Hamilton (1969-1981).
12. N. A. Curry and W. A. Runiciman, Acta Crystallogr. 12, 674 (1959).
13. N. G. Vannerberg, Acta Chem. Scand. 26, 2863 (1972).
14. E. C. Reynhardt and J. C. A. Boeyens, Acta Crystallogr. Sect. B 28, 524 (1972).
15. L. Pauling, H. D. Springall, and K. J. Palmer, J. Amer. Chem. Soc. 61, 927 (1939).
16. D. T. Cromer, J. Phys. Chem. 61, 1388 (1957).
17. D. T. Cromer and A. C. Larson, Acta Crystallogr. 15, 397 (1962).
18. I. D. Brown, Acta Crystallogr. Sect. A 32, 24 (1976).
